Chapter 8

Motion on a Fractal

In earlier chapters we learned about the geometry of branching and
fractal objects, how they grow, and how to measure their fractal di-
mension. But this is only part of the story. Lungs are shaped like
natural or random fractals (structures that grow with an element of
chance and over a range of magnifications have the same fractal dimen-
sion). Some rocks are also shaped like natural fractals. The brain, coral,
mountains, bacterial colonies, and the edge of ripped paper towels can
also have fractal shapes. But now our question is why?

Why should the lungs have a branching, perhaps fractal pattern?
How does this pattern help the lungs to function better? How does its
fractal pattern help coral to grow and thrive? And if mountains are
fractal, what are the consequences for water flow? If rocks are fractal,
what are the implications for oil or mineral recovery? If a rough surface
is fractal, what does that mean for the artist who paints on it? or the
hobbyist who runs an electric current through it? Can a subway system
whose map is a fractal efficiently serve a city? Can a fractal pattern
help things to work better?

An important question for current research is: How do fractal struc-
tures improve function? On a practical level, engineers try to under-
stand how water passes through soil and rock in the ground (“hydro-
logical transport properties of porous rock”), the resistance to electrical
current on rough surfaces (“ electrical impedance of rough surfaces”), or
why glass stays hot longer when it is heated than metal does (“thermal
transport in amorphous materials”).
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How can we simulate a system created by random processes? Two
natural fractals grown under the same conditions may have the same
fractal dimension, but still be different from one another. No two elec-
trodeposits or snowflakes or root systems or river deltas or lightning
strokes or lungs or corals or termite tunnels or city subway systems
are the same. So how can we compare members of each group among
themselves (such as the branching deltas of two different rivers), and
draw general conclusions? If each case is unique, how can we estimate
how much oil we can recover from porous rock, how long it takes for a
signal to travel through a nervous system, how Nature designs a coral
colony for efficient feeding, or how well the human lung exchanges car-
bon dioxide and oxygen?

Q8.1:  Speculate: Why are there similarities
between the bronchial system, the circulatory
system, and the nervous system? What is each
attempting to accomplish? What is the task
that must be carried out by each of these struc-
tures, and how do their branching structures
help them carry out these tasks?

We start to analyze motion on a fractal by studying a simple sys-
tem, one which retains the basic properties of a real system, but which
can be easily manipulated and analyzed. This modeling process helps
build our intuition about the behavior of real objects which have more
complicated shapes.

The fractal shown in Figure 8.1 is called the Sierpinski gasket and
has proved to be a workhorse for testing theories. Because of its simple
network connections, many properties of this fractal, such as its fractal
dimensions, can be easily found. Do you see that every intersection in
the pattern—where two or more lines meet—is connected to four other
intersections? Exception: the three external vertices (represented by
dots in Figure 8.1), which are connected to only two other intersections
in the pattern. Being connected to four other intersections is also true
of intersections on a square grid.
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Figure 8.1: Building the Sierpinski Gasket. Each step in the
construction—(a), (b), (c)—uses three structures identical to that of

the previous step. Only three steps are shown here. The same kind of
steps are repeated indefinitely to create a “true” mathematical fractal.

Q8.2:  Speculate: Each intersection point on
the Sierpinski gasket has four nearest neigh-
bors. Then why is the Sierpinski gasket not
just a rearrangement of a square grid?

In this chapter we begin by reconsidering an exercise we did earlier—
finding out how many random steps it takes on average to travel a given
distance from a starting point. Earlier we studied the random walker
on a square grid, one in which each point had four connections to
neighboring points (see Section 3.7 beginning on page 59). This was a
two-dimensional grid. In this chapter we study what happens if instead
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you do a random walk between points on a fractal grid. Specifically,
we perform a random walk on a Sierpinski gasket and find the average
number of steps necessary to travel between two points on the gasket.

After studying the random walk on a fractal, we tackle another kind
of problem: How does electricity flow on a fractal? This is analogous to
asking, How does water flow through porous rock? or How efficiently
will a railway system operate? or What kind of flight network should
an airline design to maximize its profits?

A
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(b)

Figure 8.2: (a) Second step in building the Sierpinski gasket, with grid
points labeled by dots (e). (b) Third step in building the Sierpinski
gasket, with grid points also labeled by dots (e).
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8.1 Random Walk on a Fractal

The length of one step in Figure 8.2 as the distance from point A to
point B. Then the distance from point A to point B” is four steps.
(From now on, we will call each intersection—where two or more lines
meet—a point or a grid point.) What do we mean by a random walk
on the gasket? If we are at point A or at either of the two point marked
B” in Figure 8.2(b), then we are connected to only two other points on
the gasket. A random step from A or B” will take us to one of the two
nearest grid points, with a 0.5 probability of arriving at each point. If
we are at any other point on the gasket, then we are connected to four
other grid points. Then a random step will take us to one of these four
nearest grid points, with a 0.25 probability of arriving at each point,
just as in the case of the random walk on a square grid.

Q8.3:  Speculate: If we start a random walker
at Point A, how many steps will it take on
average for it to reach Point B”? The points
are separated by a distance of four steps. If
this were a square grid, we might guess that
the average number of steps necessary to travel
this distance would be 16. For an explanation,
see Section 3.5 beginning on page 52.

Q8.4: Do you think that it will take on average
a greater or lesser number of steps than 16 to
go from Point A to Point B"? Write down a
brief argument to explain your prediction.

HandsOn 33: Random Walk on a Fractal

We now attempt to determine experimentally the average time it takes
for a particle to move from one point to another on the Sierpinksi
Gasket. The method is as follows: Roll a four-sided die, and move
a random walker on the gasket. Keep count of how many steps the
walker takes to move from one point to another point. By repeating
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this procedure, you will find the average time necessary to move specific
distances.

Now for the details. “Time” in this case means the same thing as
the “total number of steps” taken by the random walker. If it makes
it easier for you, call the unit of time 1 second, and assume the walker
takes 1 step per second. Then 10 steps take 10 seconds, 50 steps take 50
seconds, and so forth. The number of steps—the time—to go from one
point to another will most likely be different for different trials because
of the randomness of the process, based on the flip of a coin or the
throw of a die. Hence we will try to predict the average times to go
from one point to another. To emphasize that the times are averages,
we use brackets ( ). For example, the average time it takes to go from
Point A to Point B is written (T4p).

In the following experiment we use a 4-sided die (available in some
game stores) to produce random numbers. To use such a die, roll it
and look at the number which appears along the bottom edge of the
die. This is the result of your roll.

Q8.5: If you have only an ordinary 6-sided die,
use four of the faces. That is, if a 5 or 6 comes
up, ignore it and roll again. Speculate: Is this
really the same as using a 4-sided die?

To measure the average time it takes to go from one external vertex
to another external point on the Sierpinski gasket (for example, from
A to B’ in Figure 8.2(a)), carry out the following steps. First, place
your “walker” (e.g., penny, pen top, thumb tack) at point A on the
gasket. Flip a coin. If the coin comes up heads, move the walker down
to the right. If the result is tails, move the walker down to the left.
Now there are four possible directions for the next step. Roll the die.
Move the walker according to the diagram in Figure 8.3. Select from
the three possible orientations the one that fits your current position,
and move the walker accordingly.

1. Find the average time (T4p) (that is, the average number of
random steps) required to move from point A to either of the
two points labeled B’ in Figure 8.2(a) or 8.2(b). Start with your
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Figure 8.3: Choosing the direction for the next step from labeled points
in Figure 8.2(b). In each case, the direction is given by the number
resulting from the roll of a 4-sided die.

walker at point A and tally the number of steps it takes to arrive
at either point labeled B’. Record this number and repeat this
trial 10 times. On each trial, record also the number of steps
needed for the walker to arrive for the first time at point C'.
Record only the number of steps prior to the first arrival at C’.
Ignore any later returns to C’. Then continue with your walk
until you arrive at either B'. (It is possible that the walker will
not reach C’ on a given trial. In that case, you won’t have data
for arrival at C’ for that trial. That’s all right.) Record your
results on a data sheet.

. The goal of this second task is to evaluate the average time (T4 )

(= average number of random steps) to move from Point A to
either of the points B” in Figure 8.2(b). As in Task 1, for each
trial start the walker at Point A and record the number of steps
taken before arriving at either of the equivalent vertices labeled
B”. Also record the number of steps necessary to first arrive at
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either point B’ on each trial (this data can be used to supplement
your results in Task 1). Carry out 10 such trials recording your
results for each one on a data sheet.

Now analyze your data. Because 10 is a small number of trials,
your average results may be very different from your neighbor’s.
You can obtain better results by averaging the results of your
trials with those of the other members of the class.

Q8.6:  Compute (T4p), the average time it
takes to move from point A to either point B'.
Use the data from Task 1. Using the data from
Task 2, compute (Tapr). How do these two
averages compare to what the movement would
be like on a square grid?

Q8.7:  Compute (Terp). (Hint: You counted
the number of steps necessary to arrive first
at C' and then to arrive at either B'. For each
trial where you passed through C’, subtract the
former from the latter to find the number of
steps needed to move from C’ to either B'.

Q8.8:  From Figure 8.2(a), see if you can jus-
tify the following equation:

<TABI> =1+ <TBB’>- (81)

Here we have written 1 for (T4p), the time
needed to go from A to either point B in Figure
8.2(a). Use this equation to compute (Tgp)
from your data. (With two more such equa-
tions, it is possible to solve exactly for the av-
erage first arrival time at an external vertex on
a Sierpinski gasket.
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8.2 The Power Law for a Random Walker
on a Sierpinski Gasket

In earlier chapters you studied the properties of a random walk along
a line, and on a two-dimensional square grid. We found that for a
random walk along a straight line or on a flat surface, after NV steps (or
a “time of N”) the mean square distance traveled (R?) is proportional
to N, or equivalently, the root mean square displacement (see Section
3.7 beginning on page 59) is

(R2) = N1/2, (8.2)

On a fractal, interconnections are not so regular as on a straight
line or square lattice. Therefore the relationship between the number
of steps and the average distance covered may not be the same. We
try to describe this difference by a change in the exponent 1/2 on N in
Eq. 8.2 to a different value, as yet undetermined, which we shall call s:

V(R2) = N°. (8.3)

For the Sierpinski gasket we can derive the exponent s by using a
procedure similar to the following: Suppose that in the experiment of
HandsOn 33 on page 193, your data showed

(Tap) = 5(Tan). (8.4)

Values of T' (the time) in Eq. 8.4 mean “number of steps,” the same
as N in Eq. 8.3. Then Eq. 8.4 and your experiments tell us that to
go twice the distance (that is, to go from A to B’ which is twice the
distance from A to B), it takes on average 5 times longer. For this
case, Eq. 8.3 can be written as:

2 =5 (8.5)
Use the properties of logarithms to show that

log 2 = log(5°) = slog5b (8.6)
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or

s = = 0.431. (8.7)

This exponent is less than the 1/2 for a random walk on a square grid as
shown in Eq. 8.2 above. This result would indicate that movement on
a Sierpinski gasket differs from that on a square grid. This movement
in fact has been named anomalous diffusion.

8.3 Diffusion on Sierpinski Gasket

In the preceding section we learned that the average distance a random
walker moves in a given length of time is determined by the connec-
tivity of the points on the grid on which the walker moves. Although
we studied a simple model, a random walk on a Sierpinski gasket, the
results illustrate the behavior of random walkers in materials with com-
plicated connections. Remember that the phenomenon of diffusion is
explained using the model of random walkers. In fact, you have just
studied diffusion on a fractal, in this case diffusion on the Sierpinski
gasket.

In the following section we study the electrical resistance of the
Sierpinski gasket, and how it varies with size. The experiments to be
performed, and the behavior of the Sierpinski gasket made of resistors,
is analogous to the behavior of the Sierpinski gasket made of pipes
through which water flows. So if you have not studied electrical circuits
yet, you can think of circuits as systems of water pipes.

HandsOn 34: Resistance of a Fractal Network

Recall how one calculates the net resistance of two resistors in series or
in parallel. We offer two different ways to think of resistance: one is
electrical resistance, the other is resistance to the flow of water through
pipes.

In Figure 8.4(a), two resistors are in series in a circuit with a battery.
Resistors literally resist the flow of current. When one resistor follows
another, the total resistance of the circuit is R + R».



8.3. DIFFUSION ON SIERPINSKI GASKET 199

BN

Battery
@

Piston Water

l l Porous Rock Porous Rock

(b)

Figure 8.4: (a) Two resistors in series with a battery. The resistance of
this circuit is the sum of the resistances of the two resistors. (b) Two
porous rocks in series with a piston pump that drives water through
them. The resistance to the flow of the water is the sum of the resis-
tances of each of the rocks to water flow.

Figure 8.4(b) shows a piston applying pressure to drive water
through two porous rocks connected in series with pipes between them.
If a constant force is applied to the piston, then the rate of flow of wa-
ter through the porous rocks is determined by their resistances. Since
the two rocks are in a row, the resistances of the two porous rocks are
added together.

What is important about series resistances is that they add. If you
double the length of a resistor, its resistance doubles. To describe how
resistors add in series, we could say that the resistance increases with
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the total length of the resistors. So, for resistors in series, the total
resistance is proportional to length, L, i.e., R ~ L.
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Figure 8.5: (a) Two equal resistors in parallel with a battery. The
resistance of this circuit is half that of the same circuit with a single
resistor. (b) Two porous rocks in parallel in a water pipe circuit. The
two rocks are identical. The resistance to the flow of water is half the
resistance of the pipe circuit with one porous rock.

By contrast, Figures 8.5(a) and 8.5(b), show two resistors and two
porous rocks in parallel. The piston applies the same force to each
of the porous rocks. Each rock experiences the same water force as
it would if it were alone, with no parallel rock alongside it. Each rock
permits the passage of as much water as if it were alone. Taken together
then, the two rocks pass twice as much water as either rock alone.

Twice as much water for the same force on the piston means that



8.3. DIFFUSION ON SIERPINSKI GASKET 201

the two rocks in parallel have half the resistance to water flow as one
rock alone. What is important is that the total resistance decreases as
more resistors are placed in parallel. If two equal resistors are placed
in parallel, their combined resistance is half of the resistance of either
one alone.

We could also reason that placing resistors in parallel is equivalent
to increasing the cross-sectional area A through which current can flow.
Since the resistance decreases with more resistors in parallel, and hence
greater cross-sectional area, we can say that R ~ %.

Combining our result for series and parallel resistors, we conclude
that for ordinary objects the dependence of resistance R of material of
cross-section A and length L is

L

Here the constant of proportionality p is called the resistivity. The
resistivity p has a different value for different materials. For example,
copper and carbon have different values of resistivity.

What does this all have to do with fractal dimension?

Let’s apply the logic of the preceding section to objects with differ-
ent dimensions, as shown in Figures 8.6(a),(b), and (c). The wire in
Figure 8.6(a) is effectively a one-dimensional object, because we vary
only its length and not its radius.

Q8.9: Does the actual value of the radius mat-
ter in determining whether an object can be
considered one-dimensional? Can you imagine
cases when it does, and other cases when it
does not?

In particular, if we double the length of such a wire, its resistance
doubles. From this we conclude that for a one-dimensional object,
R ~ L = L' (here we emphasize that the exponent is 1).

Now consider the two-dimensional square sheet resistor in Figure
8.6(b). We treat it as two-dimensional because throughout the following
we hold its thickness ¢ constant.

END ACTIVITY
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Figure 8.6: With each shape the dependence of the resistance on the
length is indicated. (a) One-dimensional resistor: if we double its length
the total resistance doubles. (b) Two-dimensional resistor: if we double
both the length and the width of the sheet (while holding the thickness
constant), its resistance stays constant. (c¢) Three-dimensional resistor:

if we double the length of each side of the cube, its resistance is cut in
half.

(Q8.10: When does such a sheet behave like a
two-dimensional object, and when is its third
dimension important?

The cross-sectional area of the sheet is A = tL. So, if we double its
length L and double its width L, then the resistance remains constant
since L cancels out in Eq. 8.8):

L L p
R = — = _— = -, 8_9
PL=PT = (8.9)
The result is that in two dimensions the resistance does not depend
on the size of the sheet if we increase both the length and width by

the same factor (while keeping the thickness constant). We write this
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formally as R ~ L°. Recall that any quantity to the zero power has
the value unity (unity = 1), so in this case R is constant.

Q8.11:  Speculate: How is it possible that
the resistance is independent of the length and
width of the sheet in two-dimensions? Physi-
cally what does this mean?

Let’s consider the change of resistance of a sheet as we increase its
width and length separately. If we double its length in the direction of
current flow, then the resistance of the sheet doubles. This action is
equivalent to treating the sheet as a one-dimensional object. In terms
of water flow through the sheet, we have doubled the distance over
which the water must be driven, and hence doubled the resistance to
the flow of water.

On the other hand, if we double the width of the sheet in Figure
8.6(b), this is equivalent to adding an identical resistor in parallel. This
cuts the resistance in half. Or, in terms of water flow, we have doubled
the quantity of water that can flow through when the same force is
applied to the piston, which means the resistance to fluid flow has been
cut in half.

This combination of series and parallel resistance changes yields
the surprising result that in two dimensions, the resistance of a square
sheet (of a given thickness) is not dependent on the edge length L of the
sheet, but only on the material (that is, on the value of its resistivity
p). Equivalently, for flow through a slab of uniform two-dimensional
rock, the resistance is not dependent on the width or length of the slab!

Q8.12: Is the above result true only for square
two-dimensional sheets? If you double both the
width and the length of a rectangular sheet,
does the resistance remain the same?

Finally, let’s consider the resistance of a three-dimensional cube
as in Figure 8.6(c). If we double the cube’s length in the direction
of fluid or electric flow (making it no longer a cube but something
called “a rectangular parallelepiped”), this doubles its resistance. If we
double its width (equivalent to putting two of the new parallelepipeds
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in parallel), we halve its resistance. Finally, if we double the height of
the cube, equivalent to putting four more parallelepipeds in parallel,
we halve the resistance again. The result is a new cube with resistance
1 1 1
2X =X — ==
2 2 2
times the original resistance. From this we conclude that the resistance
of a cube varies with the length of a side as R ~ 1/L = L~!. This also
follows directly from Eq. 8.8, since A = L? results in

L L P
R=py=rp=1

We have found that in one dimension, R ~ L*!, in two dimensions,
R ~ L% and in three dimensions, R ~ L 1.

All of the above results regarding resistance in 1-, 2-, and 3-
dimensional objects (with L describing the size of the object), can be
summarized by writing

R~ L*% (8.10)

where d is the dimension of the object. Verify this by substituting
d =1, 2, and 3 into Eq. 8.10 and comparing the results with the results
of the previous analysis.

Q8.13:  Speculate: Suppose that a mythical
hypercube (a cube in four dimensions—don’t
even try to draw one!) has edge length L, and
resistance Ry. What would its resistance be, as
a multiple of Ry, if you doubled the edge length
in all four dimensions.

Now we are experts on the how resistance behaves for objects with
integer dimensions. We have attempted to understand the behavior
of such objects using simple arguments about resistors in series and
parallel.

But what about objects which have a more complicated geometry
than that described by integer dimensions? What about fractal objects
with non-integer dimensions? For example, what is the resistance of the
Sierpinski gasket measured between a variety of points on its structure?
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HandsOn 35: Measuring the Resistance of the Sier-
pinski Gasket

In the following experiment, you will assemble a fractal resistor network
that has the structure of the Sierpinski gasket. In order to assemble a
large gasket, this experiment requires cooperation among many collab-
orators or class participants.

In a classroom setting, each student is provided with nine identical
resistors (e.g., 1 k{2 is fine) and a 5 cm X 5 c¢m circuit board (insulating
fiberboard with holes punched in it) on which to mount the resistors.
Each student group should be provided with an ohmmeter to measure
electrical resistance.
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Figure 8.7: Construction of the Sierpinski Gasket resistor network fol-
lowing the generation process of Figure 8.1. Here the first generation
is shown. Each step in the construction—shown on the following two
figures—uses three structures identical to that of the previous step.
The same kind of steps are repeated indefinitely to create a “true”
mathematical fractal.

The steps in this experiment for groups of three students are:
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Figure 8.8: The first generation is repeated 3 times to create a second
generation gasket with 9 resistors.

1. Each student of each team should assemble a 3-resistor gasket

(a first generation Sierpinski gasket) as shown in Figure 8.7, then
measure the resistance between points A and B. Record this resis-
tance. Then each student should continue, assembling a 9 resistor
second generation gasket as shown in Figure 8.8, measure the re-
sistance between points A and B’, and record this resistance.

Each team of students should construct the circuit in Figure 8.9
by linking together the three circuits they made in Step 1. Mea-
sure the resistance between points A and B”, and record this
value. All teams should now compare resistance measurements to
be sure that none of the assembled circuits are defective.

. Three teams should join their circuits together to build the next

generation of the gasket shown in Figure 8.10. Measure the re-
sistance between the outer vertices A and B, and record the
value.

4. If the class is large enough (27 students), the process can be
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Figure 8.9: The second generation is repeated 3 times to create a third
generation gasket with 27 resistors.

repeated one more time to produce another generation of the
gasket. Again the resistance should be measured between the
external vertices, and recorded. (If the class is smaller than 27,
perhaps some students can build extra circuits.)

5. To analyze the data, plot on log-log paper the measured resistance
from vertex to vertex along the vertical axis vs. the number of
resistors along one side of the network (i.e., the vertex-to-vertex
distance) along the horizontal axis. Draw the best straight line
you can through these graphed points.
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Figure 8.10: The fourth generation of the gasket with 81 resistors.

Q8.14: What would the slope be if you plot-
ted on log-log paper the resistance of a one-
dimensional chain of resistors as a function of
the number of resistors? What would the slope
be if you plotted on log-log paper the resis-
tance of a series of conducting squares of dif-
ferent sizes as a function of the length L of their
edges? And for a cube?

Q8.15:  The slope you obtained in step 5 is
a measure of the dependence of the electrical
resistance on the size of the Sierpinski gasket
circuit. Does the value you find make sense in
relation to the resistance of objects of dimen-
sions 1, 2 and 3 shown in Figure 7.67
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8.3.1 Computing the Resistance of the Sierpinski
Gasket

Figure 8.11: The basic star-triangle transformation. The triangle of
resistors of resistance Ry (1) is rearranged as a series of two resistors in
parallel with a third resistor (2). We find the resistance between points
A and B to be 2Ry/3. We then replace the triangle of resistors with
a star of resistors connecting points A, B, and C (3). Each of the star
resistors is Ry/3.

We have made a measurement of the resistance of the Sierpinski
gasket resistor network. How can we calculate a number with which
to compare it? To compute the resistance of the Sierpinski gasket
resistor network in Figures 8.7 to 8.10, we cannot use Eq. 8.8—there
is no direct relationship to cross-sectional area or length. Instead, we
use a method for analyzing networks of resistors called the triangle-
star method. We apply the triangle-star method to Figure 8.7, as is
indicated schematically in Figure 8.11(a).

Begin by analyzing the triangular connection of wires between ver-
tices A, B, and C in Figure 8.11(a). We want to know the value of
resistance between vertices A and B. We can redraw this circuit as two
series resistors in parallel with the third resistor.

Each of the individual resistors still has a resistance R,. If you know
how to compute the resistance for a parallel resistor circuit, then you
can solve this problem mathematically. The resistance between points
A and B is 2R, /3.

You can also arrive at this result by a physical argument. Return
to the analogy of pressure being applied to porous rocks. Suppose the
current of water through one porous rock is I,. If we apply the same
pressure across two such rocks in series, the total current will be 1,/2
since the resistance is doubled (Figure 8.4).
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Figure 8.12: Application of the star-triangle transformation of Figure
7.8 to the gasket shown in Figure 8.2(a). In going from (a) to (b) in
the figure above, each of the triangles is replaced by an equivalent star.
A rearrangement of the internal resistors in (c¢) and (d) reveals that
we have recovered another triangle with resistors of 2R;/3 on each leg.
This triangle is in turn replaced with a star in (e) where each leg has
a resistance od 2R;/9. Finally, adding the two resistances in each leg
in (f), we are left with a star with each leg’s resistance 5Ry/9. The
resistance between points A’ and B’ is then 10R,/9.

Now connect the two ends of a single porous rock across the outer
ends of the two porous rocks in series, giving a result that looks like the
middle diagram in Figure 8.11. Then apply the same pressure as before
between the two ends of this structure (A and B). The same applied
pressure forces the same current I,/2 through the branch containing
two rocks in series. In addition, a current I, passes through the branch
with the single porous rock. The sum of these two flows is 31,/2. In
brief, the same pressure as before causes a greater current (3/2 times as
great) through the structure. To achieve this, the equivalent resistance
for this circuit of porous rocks must be smaller than that of the single
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porous rock. How much smaller?

e Twice the current would mean half the resistance.
e Half the current would mean twice the resistance.
e S0 3/2 the current means 2/3 the resistance.

e We say that the resistance and current are inversely proportional
to one another.

Whether by mathematical formula or physical argument, we come
to the conclusion that the resistance between points A and B is 2R, /3.

The next step of the argument is key: when analyzing a network,
the resistors between points A and B, for example, can be replaced
by another set of resistors provided the new set of resistors produce
the same resistance between these points. For example, in the case of
Figure 7.8(a), we can replace the “triangle” of resistors with a “star”
of resistors each with resistance Rg/3. This preserves the resistances
between the external points: the resistance between points A and B
remains 2R, /3 after the substitution of the new arrangement of resis-
tors. The resistance between point A and C also remains 2R, /3 after
the substitution.

Having simplified the network in Figure 8.7, we apply this result
to higher generations of the gasket. The triangle-star rearrangement
of the circuit in Figure 8.11 is shown in Figure 8.12, which has five
steps. The first step is to replace the three triangles of Figure 8.12(a)
by stars in the same fashion as in Figure 8.11. The result yields one
large internal triangle in step (c) of Figure 8.12. This in turn can be
replaced by a star, again using the method of Figure 8.11. Proceeding
in this fashion, we reduce any gasket of resistors to one equivalent star
of known resistance. The results for the resistance between the external
vertices for gaskets of increasing generation number are:

2R, /3 for the initial triangle as in Figure 8.11;

10Ry/9 for the first step gasket (9 resistors) as in Figures 8.8 and
8.12;



212 CHAPTER 8 MOTION ON A FRACTAL

50R, /27 for the second step gasket (27 resistors) shown in Figure
8.9;

250R,/81 for the third step (81 resistors) shown in Figure 8.10;
1250R, /243 for the fourth step (243 resistors);

6250R, /729 for the fifth step (729 resistors).

Generally for the n-th step (31 resistors) the resistance between

two external vertices is:
2 x 5"

3n+1

Ry. (8.11)

This is the general formula for the resistance expressed as a function
of the transformation step number. But the basic question remains: if
you pick up a gasket of length L, and then another of length L', what
is the relationship between the two resistances?

What we are after is a relationship between the resistance and the
size; here size is measured by the vertex-to-vertex length of the gasket.
To derive this relationship, we postulate that as a function of the vertex-
to-vertex distance L the resistance between vertices can be written as

R(L) = kL". (8.12)

Here k is a constant of proportionality, and the exponent ¢ tells us
about the way resistance depends on size of the circuit [compare this
equation with Eq. 8.10].

Having made this postulate, we test if it is valid. Compare the
resistance for the original single triangle, (2/3)Ry (Figure 8.11), with
that of the first-step triangle, (10/9)Ry (Figure 8.12). See that

R(2L) = gR(L). (8.13)

If we substitute Eq. 8.12 into Eq. 8.13 we obtain

R(2L) = k(2L) = gR(L) _ gqu. (8.14)
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Equate the second entry £(2L)? in Eq. 8.14 to the last entry (5/3)kL1.
This yields 27 = 5/3, so the exponent ¢ is
log(5/3)

— 08/ _ g 737, 1
1= gz = 078 (8.15)

Q8.16: Does this result of 0.737 make sense?
The Sierpinski gasket has a dimension of 1.58,
between d = 1 and d = 2. What is the resis-
tance exponent for d = 17 What is it for d = 27
Do you see a pattern?

This method of star-triangle transformation to analyze the Sierpin-
ski gasket can be generalized to analyze an arbitrary random network
on a square or triangular grid. The power of this method is not re-
stricted to this one example.

8.4 An Exact Solution for the Dimension

of a Random Walk on a Sierpinski
Gasket (Advanced)

We can derive the exponent s in Eq. 8.3 directly by using equations
similar to Eq. 8.1. Begin by applying a test to (T¢/p). Let us imagine
that we execute four separate trials for randomly walking from C’ to
B’. From C' there are four paths to B’. Refer to Figure 8.2(a). On
average, we expect that: on one trial we go directly to the leftmost B’
in time (T4p) (the same as the time to go between the adjacent point
A and B); on one trial we go directly to the rightmost B’; on one trial
we go to the leftmost point B in time (T45), and then take time (Tgp)
to arrive at a B'; and, finally, on average one of the walks will first take
us the rightmost point B in time (T4g), and from there it will take
(Tgp') to arrive at a B’.
Express this analysis as an equation:

A(Terp)y = the average length of time to execute four trials from C’ to B’
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(T'ap)(the time to go directly to the leftmost B’)
(T'ap)(the time to go directly to the rightmost B’)
(T'4p)(the time to go from C’ to leftmost B (i.e., 1 step)
(Tpp')(the average time to get to B’ from B)

+ + + + +

(Tpp)(the average time to get to B’ from B)
ATag) + 2(Tsp)-

In short, our second equation relating the average internal times is:

(Tpp) '

(Terpr) = (Tag) + 5

(8.17)

Finally, we apply the same logic to four trial random walks which are
initiated at a point B. On average: one walk will take time (T45) to
arrive at the other point B, and then the average time (Tzp:) to arrive
at one of the points B’; one walk will take time (T45) to move to point
A, and then time (Tap/) to arrive at B'; one walk will take time (T4p)
to arrive at C’, and then time (T p) to arrive at a B'; and, one walk
go directly to B’ in time (T4p). Summing these four ways to go, we
have (with the parenthesized terms in order of the above description):

UTpp) = ((Tap)+(Tep))+ (Tap) + (Tap))
+ ((Tap) + (Terpr)) + ((Tas))- (8.18)

Simplifying this equation:

3(Tpp) = {Tap) + (Tap) + (Top)- (8.19)

Q8.17: Do your averaged quantities computed
in Task 1 in HandsOn 33 on page 193 satisfy
these equations? Check the numbers. Do you
get better agreement using average times as
found averaging over the data of all students?

)

(T4p)(the time to go from C' to rightmost B (i.e., 1 step))

(8.16)
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Q8.18:  Equations 8.1, 8.17, and 8.19 are a
system of three simultaneous equations in the
three unknowns (Tgp'), (Tap'), and (Terp) in
terms of the known (T4p). Try solving these
equations to prove Eq. 8.4.




